
Klint: Compile-time Detection of Atomic Context
Violations for Kernel Rust Code

Gary Guo

Kangrejos, 16 Sep 2023



The peril of sleep in atomic context

spin_lock(&lock);
...
mutex_lock(&mutex); // BAD
...
spin_unlock(&lock);

▶ We all know that this is bad code.

▶ This can happen by accident.

▶ Is this safe?

▶ It can cause deadlock, but deadlock is memory-safe.



The peril of sleep in atomic context

spin_lock(&lock);
...
mutex_lock(&mutex); // BAD
...
spin_unlock(&lock);

▶ We all know that this is bad code.

▶ This can happen by accident.

▶ Is this safe?

▶ It can cause deadlock, but deadlock is memory-safe.



The peril of sleep in atomic context

spin_lock(&lock);
...
mutex_lock(&mutex); // BAD
...
spin_unlock(&lock);

▶ We all know that this is bad code.

▶ This can happen by accident.

▶ Is this safe?

▶ It can cause deadlock, but deadlock is memory-safe.



The peril of sleep in atomic context

spin_lock(&lock);
...
mutex_lock(&mutex); // BAD
...
spin_unlock(&lock);

▶ We all know that this is bad code.

▶ This can happen by accident.

▶ Is this safe?

▶ It can cause deadlock, but deadlock is memory-safe.



A simplified RCU use case in kernel

/* CPU 0 */ /* CPU 1 */
rcu_read_lock();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);

synchronize_rcu();
/* waiting for RCU read to finish */

rcu_read_unlock();
/* synchronize_rcu() returns */
/* destruct and free old_ptr */

▶ If CONFIG_PREEMPT_RCU is off.

▶ If CONFIG_PREEMPT_COUNT is off.

▶ No code being generated for RCU read lock/unlock.

▶ synchronize_rcu returns when context switch happened on all CPUs.

▶ This assumes that context switch will not happen in RCU read-side critical
section.



A simplified RCU use case in kernel

/* CPU 0 */ /* CPU 1 */
preempt_disable(); // <-
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);

synchronize_rcu();
/* waiting for RCU read to finish */

preempt_enable(); // <-
/* synchronize_rcu() returns */
/* destruct and free old_ptr */

▶ If CONFIG_PREEMPT_RCU is off.

▶ If CONFIG_PREEMPT_COUNT is off.

▶ No code being generated for RCU read lock/unlock.

▶ synchronize_rcu returns when context switch happened on all CPUs.

▶ This assumes that context switch will not happen in RCU read-side critical
section.



A simplified RCU use case in kernel

/* CPU 0 */ /* CPU 1 */
barrier(); // <-
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);

synchronize_rcu();
/* waiting for RCU read to finish */

barrier(); // <-
/* synchronize_rcu() returns */
/* destruct and free old_ptr */

▶ If CONFIG_PREEMPT_RCU is off.

▶ If CONFIG_PREEMPT_COUNT is off.

▶ No code being generated for RCU read lock/unlock.

▶ synchronize_rcu returns when context switch happened on all CPUs.

▶ This assumes that context switch will not happen in RCU read-side critical
section.



A simplified RCU use case in kernel

/* CPU 0 */ /* CPU 1 */
barrier(); // <-
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);

synchronize_rcu();
/* waiting for RCU read to finish */

barrier(); // <-
/* synchronize_rcu() returns */
/* destruct and free old_ptr */

▶ If CONFIG_PREEMPT_RCU is off.

▶ If CONFIG_PREEMPT_COUNT is off.

▶ No code being generated for RCU read lock/unlock.

▶ synchronize_rcu returns when context switch happened on all CPUs.

▶ This assumes that context switch will not happen in RCU read-side critical
section.



A simplified RCU use case in kernel

/* CPU 0 */ /* CPU 1 */
barrier(); // <-
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);

synchronize_rcu();
/* waiting for RCU read to finish */

barrier(); // <-
/* synchronize_rcu() returns */
/* destruct and free old_ptr */

▶ If CONFIG_PREEMPT_RCU is off.

▶ If CONFIG_PREEMPT_COUNT is off.

▶ No code being generated for RCU read lock/unlock.

▶ synchronize_rcu returns when context switch happened on all CPUs.

▶ This assumes that context switch will not happen in RCU read-side critical
section.



A simplified RCU use case in kernel

/* CPU 0 */ /* CPU 1 */
barrier(); // <-
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);

synchronize_rcu();
/* waiting for RCU read to finish */

barrier(); // <-
/* synchronize_rcu() returns */
/* destruct and free old_ptr */

▶ If CONFIG_PREEMPT_RCU is off.

▶ If CONFIG_PREEMPT_COUNT is off.

▶ No code being generated for RCU read lock/unlock.

▶ synchronize_rcu returns when context switch happened on all CPUs.

▶ This assumes that context switch will not happen in RCU read-side critical
section.



A broken RCU use case

/* CPU 0 */ /* CPU 1 */
rcu_read_lock();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);

rcu_assign_pointer(v, new_ptr);
synchronize_rcu();

schedule(); /* synchronize_rcu returns */
/* destruct and free old_ptr */

/* use ptr after free! */
rcu_read_unlock();

▶ The code exhibits undefined behaviour.

▶ Sleep inside RCU read-side critical section breaks assumption of
synchronize_rcu.



A broken RCU use case

/* CPU 0 */ /* CPU 1 */
rcu_read_lock();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);

rcu_assign_pointer(v, new_ptr);
synchronize_rcu();

schedule(); /* synchronize_rcu returns */
/* destruct and free old_ptr */

/* use ptr after free! */
rcu_read_unlock();

▶ The code exhibits undefined behaviour.

▶ Sleep inside RCU read-side critical section breaks assumption of
synchronize_rcu.



Take-away

▶ Correct function of synchronize rcu relies on “no code sleeps inside atomic
context”.

▶ Memory safety of synchronize rcu users relies on correct function of
synchronize rcu.

▶ Therefore, not sleeping inside atomic context is a safety requirement of Rust
kernel code, not just a correctness requirement.



Take-away

▶ Correct function of synchronize rcu relies on “no code sleeps inside atomic
context”.

▶ Memory safety of synchronize rcu users relies on correct function of
synchronize rcu.

▶ Therefore, not sleeping inside atomic context is a safety requirement of Rust
kernel code, not just a correctness requirement.



Take-away

▶ Correct function of synchronize rcu relies on “no code sleeps inside atomic
context”.

▶ Memory safety of synchronize rcu users relies on correct function of
synchronize rcu.

▶ Therefore, not sleeping inside atomic context is a safety requirement of Rust
kernel code, not just a correctness requirement.



Why it matters to Rust-for-Linux

▶ In C there is no notion of safe and unsafe code.

▶ But in Rust there is.

▶ We want to abstract kernel API Rust bindings in a safe and sound way.



Possible solution: unsafe RCU

▶ Make all RCU abstraction unsafe?

▶ But this does not solve where Rust callback is called from C code in atomic
context: sleeping in such case still causes C code to exhibit UB.



Possible solution: unsafe RCU

▶ Make all RCU abstraction unsafe?

▶ But this does not solve where Rust callback is called from C code in atomic
context: sleeping in such case still causes C code to exhibit UB.



Possible solution: sleep is unsafe

▶ Make all sleepable function unsafe?

▶ Obvious bad idea.



Possible solution: sleep is unsafe

▶ Make all sleepable function unsafe?

▶ Obvious bad idea.



Possible solution: token types

trait Context {}
struct Atomic;
struct Process;
impl Context for Atomic {}
impl Context for Process {}
fn sleep(token: &mut Process);
impl Spinlock {

fn lock(&self, context: &mut impl Context, callback: impl FnOnce(&mut
Atomic, Guard<'_>));↪→

}

▶ This is a simplified model without considering raw atomic context.

▶ All functions that assume or change the context have to be written this way.

▶ You probably already feel the pain.



Possible solution: token types

trait Context {}
struct Atomic;
struct Process;
impl Context for Atomic {}
impl Context for Process {}
fn sleep(token: &mut Process);
impl Spinlock {

fn lock(&self, context: &mut impl Context, callback: impl FnOnce(&mut
Atomic, Guard<'_>));↪→

}

▶ This is a simplified model without considering raw atomic context.

▶ All functions that assume or change the context have to be written this way.

▶ You probably already feel the pain.



Possible solution: token types

trait Context {}
struct Atomic;
struct Process;
impl Context for Atomic {}
impl Context for Process {}
fn sleep(token: &mut Process);
impl Spinlock {

fn lock(&self, context: &mut impl Context, callback: impl FnOnce(&mut
Atomic, Guard<'_>));↪→

}

▶ This is a simplified model without considering raw atomic context.

▶ All functions that assume or change the context have to be written this way.

▶ You probably already feel the pain.



Possible solution: dynamic check

▶ Make CONFIG PREEMPT COUNT always enabled and check before sleep.

▶ My favourite solution.

▶ Proposed by Wedson in the mailing list.

▶ Linus don’t like it.

https://lore.kernel.org/rust-for-linux/Yyh3kFUvt2aMh4nq@wedsonaf-dev/
https://lore.kernel.org/rust-for-linux/CAHk-=whm5Ujw-yroDPZWRsHK76XxZWF1E9806jNOicVTcQC6jw@mail.gmail.com/


Possible solution: dynamic check

▶ Make CONFIG PREEMPT COUNT always enabled and check before sleep.

▶ My favourite solution.

▶ Proposed by Wedson in the mailing list.

▶ Linus don’t like it.

https://lore.kernel.org/rust-for-linux/Yyh3kFUvt2aMh4nq@wedsonaf-dev/
https://lore.kernel.org/rust-for-linux/CAHk-=whm5Ujw-yroDPZWRsHK76XxZWF1E9806jNOicVTcQC6jw@mail.gmail.com/


Possible solution: dynamic check

▶ Make CONFIG PREEMPT COUNT always enabled and check before sleep.

▶ My favourite solution.

▶ Proposed by Wedson in the mailing list.

▶ Linus don’t like it.

https://lore.kernel.org/rust-for-linux/Yyh3kFUvt2aMh4nq@wedsonaf-dev/
https://lore.kernel.org/rust-for-linux/CAHk-=whm5Ujw-yroDPZWRsHK76XxZWF1E9806jNOicVTcQC6jw@mail.gmail.com/


Possible solution: dynamic check

▶ Make CONFIG PREEMPT COUNT always enabled and check before sleep.

▶ My favourite solution.

▶ Proposed by Wedson in the mailing list.

▶ Linus don’t like it.

https://lore.kernel.org/rust-for-linux/Yyh3kFUvt2aMh4nq@wedsonaf-dev/
https://lore.kernel.org/rust-for-linux/CAHk-=whm5Ujw-yroDPZWRsHK76XxZWF1E9806jNOicVTcQC6jw@mail.gmail.com/


Pragmatism over soundness

▶ Our need does not fit into Rust safety model

▶ Runtime checks are not acceptable

▶ Our API will not protect against misuse when CONFIG DEBUG ATOMIC SLEEP is off.

▶ How about custom compile-time check?

▶ Entering Klint



Pragmatism over soundness

▶ Our need does not fit into Rust safety model

▶ Runtime checks are not acceptable

▶ Our API will not protect against misuse when CONFIG DEBUG ATOMIC SLEEP is off.

▶ How about custom compile-time check?

▶ Entering Klint



Pragmatism over soundness

▶ Our need does not fit into Rust safety model

▶ Runtime checks are not acceptable

▶ Our API will not protect against misuse when CONFIG DEBUG ATOMIC SLEEP is off.

▶ How about custom compile-time check?

▶ Entering Klint



Pragmatism over soundness

▶ Our need does not fit into Rust safety model

▶ Runtime checks are not acceptable

▶ Our API will not protect against misuse when CONFIG DEBUG ATOMIC SLEEP is off.

▶ How about custom compile-time check?

▶ Entering Klint



Pragmatism over soundness

▶ Our need does not fit into Rust safety model

▶ Runtime checks are not acceptable

▶ Our API will not protect against misuse when CONFIG DEBUG ATOMIC SLEEP is off.

▶ How about custom compile-time check?

▶ Entering Klint



Klint: design goals

▶ Simple rules: easy to understand by kernel developer.

▶ Must provide useful diagnostics.

▶ Tuneable: developer must be able to annotate to override when necessary.

▶ A sane default that requires little annotation.

▶ Fast: need to be feasible to run on every compilation.



Klint: design goals

▶ Simple rules: easy to understand by kernel developer.

▶ Must provide useful diagnostics.

▶ Tuneable: developer must be able to annotate to override when necessary.

▶ A sane default that requires little annotation.

▶ Fast: need to be feasible to run on every compilation.



Klint: design goals

▶ Simple rules: easy to understand by kernel developer.

▶ Must provide useful diagnostics.

▶ Tuneable: developer must be able to annotate to override when necessary.

▶ A sane default that requires little annotation.

▶ Fast: need to be feasible to run on every compilation.



Klint: design goals

▶ Simple rules: easy to understand by kernel developer.

▶ Must provide useful diagnostics.

▶ Tuneable: developer must be able to annotate to override when necessary.

▶ A sane default that requires little annotation.

▶ Fast: need to be feasible to run on every compilation.



The rule

▶ Klint tracks possible preemption count at each location as if preempt count() is
enabled.

▶ Each function is given two properties:
▶ The adjustment to the preemption count after calling this function.
▶ The expected range of preemption counts allowed when calling the function.

▶ Examples:
▶ spin lock or rcu read lock adjusts by 1 and expects 0..
▶ spin unlock or rcu read unlock adjusts by -1 and expects 1..
▶ mutex operations adjusts by 0 and expects 0



The rule

▶ Klint tracks possible preemption count at each location as if preempt count() is
enabled.

▶ Each function is given two properties:
▶ The adjustment to the preemption count after calling this function.
▶ The expected range of preemption counts allowed when calling the function.

▶ Examples:
▶ spin lock or rcu read lock adjusts by 1 and expects 0..
▶ spin unlock or rcu read unlock adjusts by -1 and expects 1..
▶ mutex operations adjusts by 0 and expects 0



The rule

▶ Klint tracks possible preemption count at each location as if preempt count() is
enabled.

▶ Each function is given two properties:
▶ The adjustment to the preemption count after calling this function.
▶ The expected range of preemption counts allowed when calling the function.

▶ Examples:
▶ spin lock or rcu read lock adjusts by 1 and expects 0..
▶ spin unlock or rcu read unlock adjusts by -1 and expects 1..
▶ mutex operations adjusts by 0 and expects 0



Annotation

#[klint::preempt_count(adjust = 1, expect = 0.., unchecked)]
pub fn rcu_read_lock() -> RcuReadGuard { /* ... */ }

#[klint::drop_preempt_count(adjust = -1, expect = 1.., unchecked)]
struct RcuReadGuard { /* ... */ }

#[klint::preempt_count(adjust = 0, expect = 0, unchecked)]
pub fn schedule() { /* ... */ }

#[klint::preempt_count(expect = 0..)]
pub fn callable_from_atomic_context() { /* ... */ }



Annotation

#[klint::preempt_count(adjust = 1, expect = 0.., unchecked)]
pub fn rcu_read_lock() -> RcuReadGuard { /* ... */ }

#[klint::drop_preempt_count(adjust = -1, expect = 1.., unchecked)]
struct RcuReadGuard { /* ... */ }

#[klint::preempt_count(adjust = 0, expect = 0, unchecked)]
pub fn schedule() { /* ... */ }

#[klint::preempt_count(expect = 0..)]
pub fn callable_from_atomic_context() { /* ... */ }



The check logic

Four step process:

1. Infer preemption count adjustments for each function

2. Infer preemption count expectations for each function

3. Check preemption count adjustments for each annotated function

4. Check preemption count expectations for each annotated function

Inference and check needs to be separate for recursive functions, more on this later.



Preemption count inference

▶ This is a dataflow analysis.

▶ Domain = sets of possible preemption counts, currently represented by a range

▶ For each call site or drop site, adjust possible preemption counts by the
preemption count of the callee.

▶ For each basic block, union possible preemption counts of all previous blocks



Preemption count inference: convergence

Problem: the domain is not of finite height

loop {
spin_lock();
if rand() {

break;
}

}

Chain: [0, 1) → [0, 2) → [0, 3) → ... is infinite. The analysis will not converge.
Solution:

▶ Extending positive upper bound towards inf produces inf

▶ e.g. [0, 1) ∨ [0, 2) := [0, inf)

▶ Extending negative lower bound towards − inf produces − inf

▶ Extending negative upper bound or positive lower bound still does the expected
range join

▶ e.g. [1, 3) ∨ [0, 3) := [0, 3)



Preemption count inference: convergence

Problem: the domain is not of finite height

loop {
spin_lock();
if rand() {

break;
}

}

Chain: [0, 1) → [0, 2) → [0, 3) → ... is infinite. The analysis will not converge.

Solution:

▶ Extending positive upper bound towards inf produces inf

▶ e.g. [0, 1) ∨ [0, 2) := [0, inf)

▶ Extending negative lower bound towards − inf produces − inf

▶ Extending negative upper bound or positive lower bound still does the expected
range join

▶ e.g. [1, 3) ∨ [0, 3) := [0, 3)



Preemption count inference: convergence

Problem: the domain is not of finite height

loop {
spin_lock();
if rand() {

break;
}

}

Chain: [0, 1) → [0, 2) → [0, 3) → ... is infinite. The analysis will not converge.
Solution:

▶ Extending positive upper bound towards inf produces inf

▶ e.g. [0, 1) ∨ [0, 2) := [0, inf)

▶ Extending negative lower bound towards − inf produces − inf

▶ Extending negative upper bound or positive lower bound still does the expected
range join

▶ e.g. [1, 3) ∨ [0, 3) := [0, 3)



The check logic

Four step process:

1. Infer preemption count adjustments for each function

▶ Infer the preemption count at Return, check if it’s single-valued, and use it

2. Infer preemption count expectations for each function

▶
∧

c∈callsite (expectation of callee− adjustment at callsite)

3. Check preemption count adjustments for each annotated function

▶ Infer the preemption count at Return, check if it matches annotation

4. Check preemption count expectations for each annotated function

▶ At each callsite, check
(annotated expectation + adjustment at callsite) ∧ expectation of callee ̸= ⊥



The check logic

Four step process:

1. Infer preemption count adjustments for each function
▶ Infer the preemption count at Return, check if it’s single-valued, and use it

2. Infer preemption count expectations for each function

▶
∧

c∈callsite (expectation of callee− adjustment at callsite)

3. Check preemption count adjustments for each annotated function

▶ Infer the preemption count at Return, check if it matches annotation

4. Check preemption count expectations for each annotated function

▶ At each callsite, check
(annotated expectation + adjustment at callsite) ∧ expectation of callee ̸= ⊥



The check logic

Four step process:

1. Infer preemption count adjustments for each function
▶ Infer the preemption count at Return, check if it’s single-valued, and use it

2. Infer preemption count expectations for each function
▶

∧
c∈callsite (expectation of callee− adjustment at callsite)

3. Check preemption count adjustments for each annotated function

▶ Infer the preemption count at Return, check if it matches annotation

4. Check preemption count expectations for each annotated function

▶ At each callsite, check
(annotated expectation + adjustment at callsite) ∧ expectation of callee ̸= ⊥



The check logic

Four step process:

1. Infer preemption count adjustments for each function
▶ Infer the preemption count at Return, check if it’s single-valued, and use it

2. Infer preemption count expectations for each function
▶

∧
c∈callsite (expectation of callee− adjustment at callsite)

3. Check preemption count adjustments for each annotated function
▶ Infer the preemption count at Return, check if it matches annotation

4. Check preemption count expectations for each annotated function

▶ At each callsite, check
(annotated expectation + adjustment at callsite) ∧ expectation of callee ̸= ⊥



The check logic

Four step process:

1. Infer preemption count adjustments for each function
▶ Infer the preemption count at Return, check if it’s single-valued, and use it

2. Infer preemption count expectations for each function
▶

∧
c∈callsite (expectation of callee− adjustment at callsite)

3. Check preemption count adjustments for each annotated function
▶ Infer the preemption count at Return, check if it matches annotation

4. Check preemption count expectations for each annotated function
▶ At each callsite, check

(annotated expectation + adjustment at callsite) ∧ expectation of callee ̸= ⊥



Complication: recursion
enum Node<T> {

Leaf(T),
Branch(Box<Node<T>>, Box<Node<T>>),

}

fn iter<T>(node: &Node<T>, f: &mut impl FnMut(&T)) {
match node {

Node::Leaf(v) => f(v),
Node::Branch(l, r) => {

iter(l, f);
iter(r, f);

}
}

}

Solution: use default value (no adjustment, no expectation) when query cycle occurs,
and check that the assumption holds. If the default is not correct, annotate:

#[klint::drop_preempt_count(expect = 0)]
enum Node<T> { /* ... */ }

#[klint::preempt_count(expect = 0)]
fn iter<T>(node: &Node<T>, f: &mut impl FnMut(&T)) { /* ... */ }



Complication: recursion
enum Node<T> {

Leaf(T),
Branch(Box<Node<T>>, Box<Node<T>>),

}

fn iter<T>(node: &Node<T>, f: &mut impl FnMut(&T)) {
match node {

Node::Leaf(v) => f(v),
Node::Branch(l, r) => {

iter(l, f);
iter(r, f);

}
}

}

Solution: use default value (no adjustment, no expectation) when query cycle occurs,
and check that the assumption holds.

If the default is not correct, annotate:
#[klint::drop_preempt_count(expect = 0)]
enum Node<T> { /* ... */ }

#[klint::preempt_count(expect = 0)]
fn iter<T>(node: &Node<T>, f: &mut impl FnMut(&T)) { /* ... */ }



Complication: recursion

Solution: use default value (no adjustment, no expectation) when query cycle occurs,
and check that the assumption holds. If the default is not correct, annotate:

#[klint::drop_preempt_count(expect = 0)]
enum Node<T> { /* ... */ }

#[klint::preempt_count(expect = 0)]
fn iter<T>(node: &Node<T>, f: &mut impl FnMut(&T)) { /* ... */ }



Complication: generics

Problem: property of generic functions depend on generic arguments.

▶ Whether Option::map sleep depends on the function that we give it.

▶ Whether Lock::lock sleep depends on if the backend is Mutex.

Solution: we check monomorphised instances.

▶ This is optimised so that klint will try to check polymorphically first, and will fall
back to monomorphised check if the function is too generic.

▶ Full detail: all klint analyses accept ParamEnv and can will instantiate when necessary.

▶ We store inferred/annotated results of each monomorphised function from a crate in
crate name.klint, so a downstream crate don’t need to check upstream crate.



Complication: generics

Problem: property of generic functions depend on generic arguments.

▶ Whether Option::map sleep depends on the function that we give it.

▶ Whether Lock::lock sleep depends on if the backend is Mutex.

Solution: we check monomorphised instances.

▶ This is optimised so that klint will try to check polymorphically first, and will fall
back to monomorphised check if the function is too generic.

▶ Full detail: all klint analyses accept ParamEnv and can will instantiate when necessary.

▶ We store inferred/annotated results of each monomorphised function from a crate in
crate name.klint, so a downstream crate don’t need to check upstream crate.



Complication: generics

Problem: property of generic functions depend on generic arguments.

▶ Whether Option::map sleep depends on the function that we give it.

▶ Whether Lock::lock sleep depends on if the backend is Mutex.

Solution: we check monomorphised instances.

▶ This is optimised so that klint will try to check polymorphically first, and will fall
back to monomorphised check if the function is too generic.

▶ Full detail: all klint analyses accept ParamEnv and can will instantiate when necessary.

▶ We store inferred/annotated results of each monomorphised function from a crate in
crate name.klint, so a downstream crate don’t need to check upstream crate.



Complication: generics

Problem: property of generic functions depend on generic arguments.

▶ Whether Option::map sleep depends on the function that we give it.

▶ Whether Lock::lock sleep depends on if the backend is Mutex.

Solution: we check monomorphised instances.

▶ This is optimised so that klint will try to check polymorphically first, and will fall
back to monomorphised check if the function is too generic.

▶ Full detail: all klint analyses accept ParamEnv and can will instantiate when necessary.

▶ We store inferred/annotated results of each monomorphised function from a crate in
crate name.klint, so a downstream crate don’t need to check upstream crate.



Complication: generics

Problem: property of generic functions depend on generic arguments.

▶ Whether Option::map sleep depends on the function that we give it.

▶ Whether Lock::lock sleep depends on if the backend is Mutex.

Solution: we check monomorphised instances.

▶ This is optimised so that klint will try to check polymorphically first, and will fall
back to monomorphised check if the function is too generic.

▶ Full detail: all klint analyses accept ParamEnv and can will instantiate when necessary.

▶ We store inferred/annotated results of each monomorphised function from a crate in
crate name.klint, so a downstream crate don’t need to check upstream crate.



Complication: indirect function call

Problem: indirect function call is a boundary for inference.

▶ Inference stops working on function pointer or trait object method calls.

Solution: assume on use-site, and check on def-site

▶ Function pointers are assumed to be sleepable and make no adjustment.

▶ klint will warn when a Rust function with different property is casted to a
function pointer



Complication: indirect function call

Problem: indirect function call is a boundary for inference.

▶ Inference stops working on function pointer or trait object method calls.

Solution: assume on use-site, and check on def-site

▶ Function pointers are assumed to be sleepable and make no adjustment.

▶ klint will warn when a Rust function with different property is casted to a
function pointer



Complication: indirect function call

Problem: indirect function call is a boundary for inference.

▶ Inference stops working on function pointer or trait object method calls.

Solution: assume on use-site, and check on def-site

▶ Function pointers are assumed to be sleepable and make no adjustment.

▶ klint will warn when a Rust function with different property is casted to a
function pointer



Complication: indirect function call

Problem: indirect function call is a boundary for inference.

▶ Inference stops working on function pointer or trait object method calls.

Solution: assume on use-site, and check on def-site

▶ Function pointers are assumed to be sleepable and make no adjustment.

▶ klint will warn when a Rust function with different property is casted to a
function pointer



Complication: indirect function call

Problem: indirect function call is a boundary for inference.

▶ Inference stops working on function pointer or trait object method calls.

Solution: assume on use-site, and check on def-site

▶ Function pointers are assumed to be sleepable and make no adjustment.

▶ klint will warn when a Rust function with different property is casted to a
function pointer



Complication: indirect function call

The same applies to traits, except that trait methods can be annotated.

/// A waker that is wrapped in [`Arc`] for its reference counting.
///
/// Types that implement this trait can get a [`Waker`] by calling

[`ref_waker`].↪→

pub trait ArcWake: Send + Sync {
/// Wakes a task up.
#[klint::preempt_count(expect = 0..)]
fn wake_by_ref(self: ArcBorrow<'_, Self>);

/// Wakes a task up and consumes a reference.
#[klint::preempt_count(expect = 0..)] // Functions callable from

`wake_up` must not sleep↪→

fn wake(self: Arc<Self>) {
self.as_arc_borrow().wake_by_ref();

}
}



Limitation

No way to represent conditional lock acquisition, e.g. try lock.

impl<T> SpinLock<T> {
// Preemption count adjustment of this function is 0 or 1 depending on

the variant of the return value.↪→

fn try_lock(&self) -> Option<Guard<'_>> { ... }
}

A callback-based API would solve this issue, but...



Limitation

klint don’t reason about variable values yet:

fn foo(take_lock: bool) {
if take_lock {

spin_lock(...);
}
...
if take_lock {

spin_unlock(...);
}

}



Limitation

RAII doesn’t help:

fn foo(take_lock: bool) {
let guard;
// An implicit bool will be introduced here by the compiler to track if

`guard` is initialised↪→

if take_lock {
guard = SPINLOCK.lock();

}
...
// An implicit branch will be introduced here by the compiler to drop

`guard` only if it has been initialised↪→

}



Limitation

It was discovered that RAII actually situation even worse

fn foo(x: Option<Guard>) -> Option<Guard> {
if let Some(x) = x {

return Some(x);
}
None

}

is desugared to something like this:

fn foo(x: Option<Guard>) -> Option<Guard> {
if x.is_some() {

return (x as Some).0;
}
drop(x); // <- rustc generates this since `x` needs drop

// this drops `Option<Guard>`, so may drop `Guard`!
None

}



Future Work

▶ Address try lock.

▶ Address condition on variable issue.
▶ A more complex inference logic that can track variant and value of local variables is

WIP.

▶ Maybe instead of using numbers to represent preempt counts, a stack may be
more appropriate?

▶ Improve diagnostics to be more developer friendly

▶ ...



Future Work

▶ Address try lock.
▶ Address condition on variable issue.

▶ A more complex inference logic that can track variant and value of local variables is
WIP.

▶ Maybe instead of using numbers to represent preempt counts, a stack may be
more appropriate?

▶ Improve diagnostics to be more developer friendly

▶ ...



Future Work

▶ Address try lock.
▶ Address condition on variable issue.

▶ A more complex inference logic that can track variant and value of local variables is
WIP.

▶ Maybe instead of using numbers to represent preempt counts, a stack may be
more appropriate?

▶ Improve diagnostics to be more developer friendly

▶ ...



Future Work

▶ Address try lock.
▶ Address condition on variable issue.

▶ A more complex inference logic that can track variant and value of local variables is
WIP.

▶ Maybe instead of using numbers to represent preempt counts, a stack may be
more appropriate?

▶ Improve diagnostics to be more developer friendly

▶ ...


	Background
	Alternatives
	Klint
	Future Work

